Dictionary-based super resolution for positron emission tomography images
In this paper, a strategy to increase the resolution of positron emission tomography (PET) images, using a previously trained high resolution dictionary for the sinograms is proposed. The low resolution input sinogram is divided into patches of 5x5 samples. The sparse code of each patch is calc...
Сохранить в:
Главный автор: | Rodríguez Hernández, Leandro José |
---|---|
Другие авторы: | Ochoa Domínguez, Humberto |
Формат: | Artículo |
Язык: | en_US |
Опубликовано: |
2019
|
Предметы: | |
Online-ссылка: | https://ijcopi.org/index.php/ojs/article/view/151 |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
Residual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography images
Опубликовано: (2023) -
Reconstruction of PET Images Using Cross-Entropy and Field of Experts
по: Mejia, Jose
Опубликовано: (2019) -
Overview of Super-resolution Techniques
по: Morera Delfín, Leandro
Опубликовано: (2018) -
Auto-regularized Gradients of Adaptive Interpolation for MRI Super-Resolution
по: Morera Delfin, Leandro
Опубликовано: (2018) -
Deep learning-based super resolution methodology for positron emission tomography imaging: 4CP22-29
по: Leandro Rodríguez Hernández, et al.
Опубликовано: (2022)