Dictionary-based super resolution for positron emission tomography images
In this paper, a strategy to increase the resolution of positron emission tomography (PET) images, using a previously trained high resolution dictionary for the sinograms is proposed. The low resolution input sinogram is divided into patches of 5x5 samples. The sparse code of each patch is calc...
保存先:
第一著者: | Rodríguez Hernández, Leandro José |
---|---|
その他の著者: | Ochoa Domínguez, Humberto |
フォーマット: | Artículo |
言語: | en_US |
出版事項: |
2019
|
主題: | |
オンライン・アクセス: | https://ijcopi.org/index.php/ojs/article/view/151 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Residual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography images
出版事項: (2023) -
Reconstruction of PET Images Using Cross-Entropy and Field of Experts
著者:: Mejia, Jose
出版事項: (2019) -
Overview of Super-resolution Techniques
著者:: Morera Delfín, Leandro
出版事項: (2018) -
Auto-regularized Gradients of Adaptive Interpolation for MRI Super-Resolution
著者:: Morera Delfin, Leandro
出版事項: (2018) -
Deep learning-based super resolution methodology for positron emission tomography imaging: 4CP22-29
著者:: Leandro Rodríguez Hernández, 等
出版事項: (2022)