Dictionary-based super resolution for positron emission tomography images
In this paper, a strategy to increase the resolution of positron emission tomography (PET) images, using a previously trained high resolution dictionary for the sinograms is proposed. The low resolution input sinogram is divided into patches of 5x5 samples. The sparse code of each patch is calc...
Sábháilte in:
Príomhchruthaitheoir: | Rodríguez Hernández, Leandro José |
---|---|
Rannpháirtithe: | Ochoa Domínguez, Humberto |
Formáid: | Artículo |
Teanga: | en_US |
Foilsithe / Cruthaithe: |
2019
|
Ábhair: | |
Rochtain ar líne: | https://ijcopi.org/index.php/ojs/article/view/151 |
Clibeanna: |
Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!
|
Míreanna comhchosúla
-
Residual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography images
Foilsithe / Cruthaithe: (2023) -
Reconstruction of PET Images Using Cross-Entropy and Field of Experts
de réir: Mejia, Jose
Foilsithe / Cruthaithe: (2019) -
Overview of Super-resolution Techniques
de réir: Morera Delfín, Leandro
Foilsithe / Cruthaithe: (2018) -
Auto-regularized Gradients of Adaptive Interpolation for MRI Super-Resolution
de réir: Morera Delfin, Leandro
Foilsithe / Cruthaithe: (2018) -
Deep learning-based super resolution methodology for positron emission tomography imaging: 4CP22-29
de réir: Leandro Rodríguez Hernández, et al.
Foilsithe / Cruthaithe: (2022)