Dictionary-based super resolution for positron emission tomography images
In this paper, a strategy to increase the resolution of positron emission tomography (PET) images, using a previously trained high resolution dictionary for the sinograms is proposed. The low resolution input sinogram is divided into patches of 5x5 samples. The sparse code of each patch is calc...
Guardat en:
Autor principal: | Rodríguez Hernández, Leandro José |
---|---|
Altres autors: | Ochoa Domínguez, Humberto |
Format: | Artículo |
Idioma: | en_US |
Publicat: |
2019
|
Matèries: | |
Accés en línia: | https://ijcopi.org/index.php/ojs/article/view/151 |
Etiquetes: |
Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
Ítems similars
-
Residual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography images
Publicat: (2023) -
Reconstruction of PET Images Using Cross-Entropy and Field of Experts
per: Mejia, Jose
Publicat: (2019) -
Overview of Super-resolution Techniques
per: Morera Delfín, Leandro
Publicat: (2018) -
Auto-regularized Gradients of Adaptive Interpolation for MRI Super-Resolution
per: Morera Delfin, Leandro
Publicat: (2018) -
Deep learning-based super resolution methodology for positron emission tomography imaging: 4CP22-29
per: Leandro Rodríguez Hernández, et al.
Publicat: (2022)