Predicting airline customer satisfaction using k-nn ensemble regression models
Customer satisfaction questionnaires are a rich and strong source of information for companies to seek loyalty, customer and client retention, opti- mize resources, and repurchase products. Several advanced machine learning and statistical models have been employed to estimate the customer satisfact...
Guardado en:
Autor principal: | García, Vicente |
---|---|
Otros Autores: | Florencia, Rogelio, Sánchez Solís, Julia Patricia, Rivera Zarate, Gilberto, Contreras-Massé, Roberto |
Formato: | Artículo |
Lenguaje: | en_US |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.rcs.cic.ipn.mx/2019_148_6/Predicting%20Airline%20Customer%20Satisfaction%20using%20k-nn%20Ensemble%20Regression%20Models.pdf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Exploring the synergetic effects of sample types on the performance of ensembles for credit risk and corporate bankruptcy prediction
por: García, Vicente
Publicado: (2019) -
Using Regression Models for Predicting the Product Quality in a Tubing Extrusion Process
por: Garcia, Vicente
Publicado: (2019) -
Regression Models for Estimating the Stress Concentration Factor of Rectangular Plates
por: Ramirez Monares, Jose Alfredo
Publicado: (2024) -
A regression model based on the nearest centroid neighborhood
por: Garcia, Vicente
Publicado: (2018) -
Analysis of job satisfaction in the hotel sector
por: Rita Patricia Contreras-Félix, et al.
Publicado: (2024)