Robust weighted Gaussian processes
This paper presents robust weighted variants of batch and online standard Gaussian processes (GPs) to effectively reduce the negative impact of outliers in the corresponding GP models. This is done by introducing robust data weighers that rely on robust and quasi-robust weight functions that come fr...
Saved in:
主要作者: | Mederos, Boris |
---|---|
其他作者: | Ramirez-Padron, Ruben, González, Avelino J. |
格式: | Artículo |
语言: | English |
出版: |
2020
|
主题: | |
在线阅读: | https://doi.org/10.1007/s00180-020-01011-0 https://link.springer.com/article/10.1007/s00180-020-01011-0 |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Application of IoT with haptics interface in the smart manufacturing industry
由: Contreras Masse, Roberto
出版: (2019) -
A Proposal for Data Breach Detection in Organizations Based on User Behavior
出版: (2021) -
Balancing estimation in rigid rotors based on machine learning: 7CP24-4
由: Ing. Juan Ángel Martínez Ramírez, et al.
出版: (2024) -
Proposal for demand forecasting of an automotive product in decline phase using Machine Learning: 8CP24-5
由: Valeria Guadalupe Gutiérrez Meléndez, et al.
出版: (2024) -
Inventory management for products with a sale single period and stochastic demand using Machine Learning models: 4CP22-16
由: Sergio Joaquín González Herrera, et al.
出版: (2022)