Robust weighted Gaussian processes
This paper presents robust weighted variants of batch and online standard Gaussian processes (GPs) to effectively reduce the negative impact of outliers in the corresponding GP models. This is done by introducing robust data weighers that rely on robust and quasi-robust weight functions that come fr...
Uloženo v:
Hlavní autor: | Mederos, Boris |
---|---|
Další autoři: | Ramirez-Padron, Ruben, González, Avelino J. |
Médium: | Artículo |
Jazyk: | English |
Vydáno: |
2020
|
Témata: | |
On-line přístup: | https://doi.org/10.1007/s00180-020-01011-0 https://link.springer.com/article/10.1007/s00180-020-01011-0 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Podobné jednotky
-
Application of IoT with haptics interface in the smart manufacturing industry
Autor: Contreras Masse, Roberto
Vydáno: (2019) -
A Proposal for Data Breach Detection in Organizations Based on User Behavior
Vydáno: (2021) -
Balancing estimation in rigid rotors based on machine learning: 7CP24-4
Autor: Ing. Juan Ángel Martínez Ramírez, a další
Vydáno: (2024) -
Proposal for demand forecasting of an automotive product in decline phase using Machine Learning: 8CP24-5
Autor: Valeria Guadalupe Gutiérrez Meléndez, a další
Vydáno: (2024) -
Inventory management for products with a sale single period and stochastic demand using Machine Learning models: 4CP22-16
Autor: Sergio Joaquín González Herrera, a další
Vydáno: (2022)