When is the frame of nuclei spatial: A new approach

For a frame L, let XL be the Esakia space of L. We identify a special subset YL of XL consisting of nuclear points of XL, and prove the following results: • L is spatial iff YL is dense in XL. • If L is spatial, then N(L) is spatial iff YL is weakly scattered. • If L is spatial, then N(L) is bo...

全面介绍

Saved in:
书目详细资料
主要作者: Ávila Álvarez, Francisco
其他作者: Bezhanishvili, Guram, Morandi, Patrick, Zaldívar Corichi, Luis Ángel
格式: Artículo
语言:English
出版: 2020
主题:
在线阅读:http://www.sciencedirect.com/science/article/pii/S0022404919303238
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:For a frame L, let XL be the Esakia space of L. We identify a special subset YL of XL consisting of nuclear points of XL, and prove the following results: • L is spatial iff YL is dense in XL. • If L is spatial, then N(L) is spatial iff YL is weakly scattered. • If L is spatial, then N(L) is boolean iff YL is scattered. As a consequence, we derive the well-known results of Beazer and Macnab [1], Simmons [22], Niefield and Rosenthal [13], and Isbell [10].