News Classification for Identifying Traffic Incident Points in a Spanish-Speaking Country: A Real-World Case Study of Class Imbalance Learning
‘El Diario de Juárez’ is a local newspaper in a city of 1.5 million Spanish-speaking inhabitants that publishes texts of which citizens read them on both a website and an RSS (Really Simple Syndication) service. This research applies natural-language-processing and machine-learning algorithms to the...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | , , |
التنسيق: | Artículo |
اللغة: | en_US |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://doi.org/10.3390/app10186253 https://www.mdpi.com/2076-3417/10/18/6253 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | ‘El Diario de Juárez’ is a local newspaper in a city of 1.5 million Spanish-speaking inhabitants that publishes texts of which citizens read them on both a website and an RSS (Really Simple Syndication) service. This research applies natural-language-processing and machine-learning algorithms to the news provided by the RSS service in order to classify them based on whether they are about a traffic incident or not, with the final intention of notifying citizens where such accidents occur. The classification process explores the bag-of-words technique with five learners (Classification and Regression Tree (CART), Naïve Bayes, kNN, Random Forest, and Support Vector Machine (SVM)) on a class-imbalanced benchmark; this challenging issue is dealt with via five sampling algorithms: synthetic minority oversampling technique (SMOTE), borderline SMOTE, adaptive synthetic sampling, random oversampling, and random undersampling. Consequently, our final classifier reaches a sensitivity of 0.86 and an area under the precision-recall curve of 0.86, which is an acceptable performance when considering the complexity of analyzing unstructured texts in Spanish |
---|