News Classification for Identifying Traffic Incident Points in a Spanish-Speaking Country: A Real-World Case Study of Class Imbalance Learning

‘El Diario de Juárez’ is a local newspaper in a city of 1.5 million Spanish-speaking inhabitants that publishes texts of which citizens read them on both a website and an RSS (Really Simple Syndication) service. This research applies natural-language-processing and machine-learning algorithms to the...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Rivera Zarate, Gilberto
مؤلفون آخرون: Florencia, Rogelio, García, Vicente, Sánchez Solís, Julia Patricia
التنسيق: Artículo
اللغة:en_US
منشور في: 2020
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.3390/app10186253
https://www.mdpi.com/2076-3417/10/18/6253
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:‘El Diario de Juárez’ is a local newspaper in a city of 1.5 million Spanish-speaking inhabitants that publishes texts of which citizens read them on both a website and an RSS (Really Simple Syndication) service. This research applies natural-language-processing and machine-learning algorithms to the news provided by the RSS service in order to classify them based on whether they are about a traffic incident or not, with the final intention of notifying citizens where such accidents occur. The classification process explores the bag-of-words technique with five learners (Classification and Regression Tree (CART), Naïve Bayes, kNN, Random Forest, and Support Vector Machine (SVM)) on a class-imbalanced benchmark; this challenging issue is dealt with via five sampling algorithms: synthetic minority oversampling technique (SMOTE), borderline SMOTE, adaptive synthetic sampling, random oversampling, and random undersampling. Consequently, our final classifier reaches a sensitivity of 0.86 and an area under the precision-recall curve of 0.86, which is an acceptable performance when considering the complexity of analyzing unstructured texts in Spanish