Dictionary-based super resolution for positron emission tomography images
In this paper, a strategy to increase the resolution of positron emission tomography (PET) images, using a previously trained high resolution dictionary for the sinograms is proposed. The low resolution input sinogram is divided into patches of 5x5 samples. The sparse code of each patch is calc...
Saved in:
主要作者: | Rodríguez Hernández, Leandro José |
---|---|
其他作者: | Ochoa Domínguez, Humberto |
格式: | Artículo |
語言: | en_US |
出版: |
2019
|
主題: | |
在線閱讀: | https://ijcopi.org/index.php/ojs/article/view/151 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Residual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography images
出版: (2023) -
Reconstruction of PET Images Using Cross-Entropy and Field of Experts
由: Mejia, Jose
出版: (2019) -
Overview of Super-resolution Techniques
由: Morera Delfín, Leandro
出版: (2018) -
Auto-regularized Gradients of Adaptive Interpolation for MRI Super-Resolution
由: Morera Delfin, Leandro
出版: (2018) -
Deep learning-based super resolution methodology for positron emission tomography imaging: 4CP22-29
由: Leandro Rodríguez Hernández, et al.
出版: (2022)