Dictionary-based super resolution for positron emission tomography images
In this paper, a strategy to increase the resolution of positron emission tomography (PET) images, using a previously trained high resolution dictionary for the sinograms is proposed. The low resolution input sinogram is divided into patches of 5x5 samples. The sparse code of each patch is calc...
Shranjeno v:
Glavni avtor: | Rodríguez Hernández, Leandro José |
---|---|
Drugi avtorji: | Ochoa Domínguez, Humberto |
Format: | Artículo |
Jezik: | en_US |
Izdano: |
2019
|
Teme: | |
Online dostop: | https://ijcopi.org/index.php/ojs/article/view/151 |
Oznake: |
Označite
Brez oznak, prvi označite!
|
Podobne knjige/članki
-
Residual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography images
Izdano: (2023) -
Reconstruction of PET Images Using Cross-Entropy and Field of Experts
od: Mejia, Jose
Izdano: (2019) -
Overview of Super-resolution Techniques
od: Morera Delfín, Leandro
Izdano: (2018) -
Auto-regularized Gradients of Adaptive Interpolation for MRI Super-Resolution
od: Morera Delfin, Leandro
Izdano: (2018) -
Deep learning-based super resolution methodology for positron emission tomography imaging: 4CP22-29
od: Leandro Rodríguez Hernández, et al.
Izdano: (2022)