Dictionary-based super resolution for positron emission tomography images
In this paper, a strategy to increase the resolution of positron emission tomography (PET) images, using a previously trained high resolution dictionary for the sinograms is proposed. The low resolution input sinogram is divided into patches of 5x5 samples. The sparse code of each patch is calc...
Αποθηκεύτηκε σε:
Κύριος συγγραφέας: | Rodríguez Hernández, Leandro José |
---|---|
Άλλοι συγγραφείς: | Ochoa Domínguez, Humberto |
Μορφή: | Artículo |
Γλώσσα: | en_US |
Έκδοση: |
2019
|
Θέματα: | |
Διαθέσιμο Online: | https://ijcopi.org/index.php/ojs/article/view/151 |
Ετικέτες: |
Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
|
Παρόμοια τεκμήρια
-
Residual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography images
Έκδοση: (2023) -
Reconstruction of PET Images Using Cross-Entropy and Field of Experts
ανά: Mejia, Jose
Έκδοση: (2019) -
Overview of Super-resolution Techniques
ανά: Morera Delfín, Leandro
Έκδοση: (2018) -
Auto-regularized Gradients of Adaptive Interpolation for MRI Super-Resolution
ανά: Morera Delfin, Leandro
Έκδοση: (2018) -
Deep learning-based super resolution methodology for positron emission tomography imaging: 4CP22-29
ανά: Leandro Rodríguez Hernández, κ.ά.
Έκδοση: (2022)