Dictionary-based super resolution for positron emission tomography images
In this paper, a strategy to increase the resolution of positron emission tomography (PET) images, using a previously trained high resolution dictionary for the sinograms is proposed. The low resolution input sinogram is divided into patches of 5x5 samples. The sparse code of each patch is calc...
Saved in:
Hovedforfatter: | Rodríguez Hernández, Leandro José |
---|---|
Andre forfattere: | Ochoa Domínguez, Humberto |
Format: | Artículo |
Sprog: | en_US |
Udgivet: |
2019
|
Fag: | |
Online adgang: | https://ijcopi.org/index.php/ojs/article/view/151 |
Tags: |
Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
|
Lignende værker
-
Residual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography images
Udgivet: (2023) -
Reconstruction of PET Images Using Cross-Entropy and Field of Experts
af: Mejia, Jose
Udgivet: (2019) -
Overview of Super-resolution Techniques
af: Morera Delfín, Leandro
Udgivet: (2018) -
Auto-regularized Gradients of Adaptive Interpolation for MRI Super-Resolution
af: Morera Delfin, Leandro
Udgivet: (2018) -
Deep learning-based super resolution methodology for positron emission tomography imaging: 4CP22-29
af: Leandro Rodríguez Hernández, et al.
Udgivet: (2022)