Dictionary-based super resolution for positron emission tomography images
In this paper, a strategy to increase the resolution of positron emission tomography (PET) images, using a previously trained high resolution dictionary for the sinograms is proposed. The low resolution input sinogram is divided into patches of 5x5 samples. The sparse code of each patch is calc...
Wedi'i Gadw mewn:
Prif Awdur: | Rodríguez Hernández, Leandro José |
---|---|
Awduron Eraill: | Ochoa Domínguez, Humberto |
Fformat: | Artículo |
Iaith: | en_US |
Cyhoeddwyd: |
2019
|
Pynciau: | |
Mynediad Ar-lein: | https://ijcopi.org/index.php/ojs/article/view/151 |
Tagiau: |
Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!
|
Eitemau Tebyg
-
Residual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography images
Cyhoeddwyd: (2023) -
Reconstruction of PET Images Using Cross-Entropy and Field of Experts
gan: Mejia, Jose
Cyhoeddwyd: (2019) -
Overview of Super-resolution Techniques
gan: Morera Delfín, Leandro
Cyhoeddwyd: (2018) -
Auto-regularized Gradients of Adaptive Interpolation for MRI Super-Resolution
gan: Morera Delfin, Leandro
Cyhoeddwyd: (2018) -
Deep learning-based super resolution methodology for positron emission tomography imaging: 4CP22-29
gan: Leandro Rodríguez Hernández, et al.
Cyhoeddwyd: (2022)