Understanding the apparent superiority of over-sampling through an analysis of local information for class-imbalanced data

Data plays a key role in the design of expert and intelligent systems and therefore, data preprocessing appears to be a critical step to produce high-quality data and build accurate machine learning models. Over the past decades, increasing attention has been paid towards the issue of class imbalanc...

Full description

Saved in:
Bibliographic Details
Main Author: García, Vicente
Other Authors: Sánchez Garreta, Josep Salvador, Marqués, Ana, Florencia, Rogelio, Rivera Zarate, Gilberto
Format: Artículo
Language:en_US
Published: 2019
Subjects:
Online Access:https://www.sciencedirect.com/science/article/pii/S0957417419307432
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Data plays a key role in the design of expert and intelligent systems and therefore, data preprocessing appears to be a critical step to produce high-quality data and build accurate machine learning models. Over the past decades, increasing attention has been paid towards the issue of class imbalance and this is now a research hotspot in a variety of fields. Although the resampling methods, either by under-sampling the majority class or by over-sampling the minority class, stand among the most powerful techniques to face this problem, their strengths and weaknesses have typically been discussed based only on the class imbalance ratio. However, several questions remain open and need further exploration. For instance, the subtle differences in performance between the over- and under-sampling algorithms are still under-comprehended, and we hypothesize that they could be better explained by analyzing the inner structure of the data sets. Consequently, this paper attempts to investigate and illustrate the effects of the resampling methods on the inner structure of a data set by exploiting local neighborhood information, identifying the sample types in both classes and analyzing their distribution in each resampled set. Experimental results indicate that the resampling methods that produce the highest proportion of safe samples and the lowest proportion of unsafe samples correspond to those with the highest overall performance. The significance of this paper lies in the fact that our findings may contribute to gain a better understanding of how these techniques perform on class-imbalanced data and why over-sampling has been reported to be usually more efficient than under-sampling. The outcomes in this study may have impact on both research and practice in the design of expert and intelligent systems since a priori knowledge about the internal structure of the imbalanced data sets could be incorporated to the learning algorithms.