Inferring Parameters of a Relational System of Preferences from Assignment Examples using an Evolutionary Algorithm
Most evolutionary multi-objective algorithms perform poorly in many-objective problems. They normally do not make selective pressure towards the Region of Interest (RoI), the privileged zone in the Pareto frontier that contains solutions important to a DM. Several works have proved that a priori inc...
保存先:
第一著者: | Fernández, Eduardo |
---|---|
その他の著者: | Sanchez Solis, Julia Patricia, Rivera Zarate, Gilberto |
フォーマット: | Artículo |
言語: | en_US |
出版事項: |
2019
|
主題: | |
オンライン・アクセス: | https://doi.org/10.3846/tede.2019.9475 https://journals.vgtu.lt/index.php/TEDE/article/view/9475 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Hybrid evolutionary multi-objective optimisation using outranking-based ordinal classification methods
出版事項: (2020) -
Robustness analysis of an outranking model parameters’ elicitation method in the presence of noisy examples
著者:: Rangel Valdes, Nelson
出版事項: (2018) -
Interdependent Projects Selection with Preference Incorporation
著者:: Gómez, Claudia
出版事項: (2018) -
Preference Incorporation into Many-Objective Optimization: An Ant Colony Algorithm based on Interval Outranking
著者:: Rivera Zarate, Gilberto
出版事項: (2021) -
PSO, a Swarm Intelligence-Based Evolutionary Algorithm as a Decision-Making Strategy: A Review
出版事項: (2022)