Demystifying Deep Learning Building Blocks
Building deep learning models proposed by third parties can become a simple task when specialized libraries are used. However, much mysterystill surrounds the design of newmodelsorthe modification of existing ones. These tasks require in-depth knowledge of the different components or building blocks...
Enregistré dans:
Auteur principal: | Ochoa Domínguez, Humberto |
---|---|
Autres auteurs: | Cruz Sanchez, Vianey Guadalupe, Vergara Villegas, Osslan Osiris |
Format: | Artículo |
Langue: | en_US |
Publié: |
2024
|
Sujets: | |
Accès en ligne: | https://doi.org/10.3390/math12020296 https://www.mdpi.com/2227-7390/12/2/296#:~:text=Demystifying%20Deep%20Learning%20Building%20Blocks%201%201.%20Introduction,3.%20Theoretical%20Foundations%20of%20Deep%20Learning%203.1.%20 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Framework to Support Radiologist Personnel in the Diagnosis of Diseases in Medical Images Using Deep Learning and Personalized DICOM Tags
par: Sánchez Solís, Julia Patricia
Publié: (2024) -
Estimación en la Intención de Agarres: Cilíndrico, Esférico y Gancho Utilizando Redes Neuronales Profundas
par: Rascon Madrigal, Lidia Hortencia
Publié: (2020) -
Deep learning model for the identification of pathologies in medical images: 7CP24-35
par: Manuel Rodríguez Contreras, et autres
Publié: (2024) -
Malaria Cell Image Classification Using Compact Deep Learning Architectures on Jetson TX2
Publié: (2024) -
Convolutional Neural Network in a Pseudo-Distributed Environment for Classification of Chest X-Ray Images of Patients with Pneumonia
par: Sánchez Solís, Julia Patricia
Publié: (2020)