Optimization of Running Blade Prosthetics Utilizing Crow Search Algorithm Assisted by Artificial Neural Networks

A crow search algorithm (CSA) was applied to perform the optimization of a running blade prosthetics (RBP) made of composite materials like carbon fibre layers and cores of acrylonitrile butadiene styrene (ABS). Optimization aims to increase the RBP displacement limited by the Tsai-Wu failure cr...

Full description

Saved in:
Bibliographic Details
Other Authors: Rosel Solis, Manuel, Davalos Ramirez, Jose Omar, Molina Salazar, Javier, Ruiz Ochoa, Juan Antonio, Gomez Roa, Antonio
Format: Artículo
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5545/sv-jme.2020.6990
https://www.sv-jme.eu/article/optimization-of-running-blade-prosthetics-by-means-of-crow-search-algorithm-assisted-by-artificial-neural-networks/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A crow search algorithm (CSA) was applied to perform the optimization of a running blade prosthetics (RBP) made of composite materials like carbon fibre layers and cores of acrylonitrile butadiene styrene (ABS). Optimization aims to increase the RBP displacement limited by the Tsai-Wu failure criterion. Both displacement and the Tsai-Wu criterion are predicted using artificial neural networks (ANN) trained with a database constructed from finite element method (FEM) simulations. Three different cases are optimized varying the carbon fibre layers orientations: –45°/45°, 0°/90°, and a case with the two-fibre layer orientations intercalated. Five geometric parameters and a number of carbon fibre layers are selected as design parameters. A sensitivity analysis is performed using the Garzon equation. The best balance between displacement and failure criterion was found with fibre layers oriented at 0°/90°. The optimal candidate with –45°/45° orientation presents higher displacement; however, the Tsai-Wu criterion was less than 0.5 and not suitable for RBP design. The case with intercalated fibres presented a minimal displacement being the stiffer RBP design. The damage concentrates mostly in the zone that contacts the ground. The sensitivity study found that the number of layers and width were the most important design parameters.