Hybrid evolutionary multi-objective optimisation using outranking-based ordinal classification methods
A large number of real-world problems require optimising several objective functions at the same time, which are generally in conflict. Many of these problems have been addressed through multi-objective evolutionary algorithms. In this paper, we propose a new hybrid evolutionary algorithm whose ma...
Uloženo v:
Další autoři: | Cruz-Reyes, Laura, Sánchez Solís, Julia Patricia, Fernandez, Eduardo, Coello Coello, Carlos A., Gomez, Claudia |
---|---|
Médium: | Artículo |
Jazyk: | English |
Vydáno: |
2020
|
Témata: | |
On-line přístup: | https://doi.org/10.1016/j.swevo.2020.100652 https://www.sciencedirect.com/science/article/abs/pii/S2210650219304274 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Podobné jednotky
-
Hybridisation of Swarm Intelligence Algorithms with Multi-Criteria Ordinal Classification: A Strategy to Address Many-Objective Optimisation
Autor: Rivera Zarate, Gilberto
Vydáno: (2022) -
An interactive ACO enriched with an eclectic multi-criteria ordinal classifier to address many-objective optimisation problems
Autor: Rivera Zarate, Gilberto
Vydáno: (2023) -
Outranking-based multi-objective PSO for scheduling unrelated parallel
machines with a freight industry-oriented application
Autor: Rivera Zarate, Gilberto
Vydáno: (2021) -
Inferring Parameters of a Relational System of Preferences from Assignment Examples using an Evolutionary Algorithm
Autor: Fernández, Eduardo
Vydáno: (2019) -
Online multi-criteria portfolio analysis through compromise programming models built on the underlying principles of fuzzy outranking
Autor: Rivera Zarate, Gilberto
Vydáno: (2021)